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1 Introduction

An extensive and important field within modern mathematics is that of Numerical Linear Algebra.
It explores the use of numerical methods to solve problems arising from linear algebra, and the
ability to solve these problems is of fundamental importance to mathematical scientists [1]. Solving
systems of linear equations is a question of particular interest within the field of numerical linear
algebra, as many real-world problems reduce to solving of linear systems. It is a problem that
arises in the contexts of; approximating partial differential equations [2], signal processing [3], [4],
computed tomography (CT) scans [5], and machine learning [6], to name only a few applications.

Many of these problems result in very large systems which are difficult, or computationally unreas-
onable, to solve directly. Some methods to solve linear systems that the reader may be familiar
with include: Gaussian elimination, LU decomposition, or QR decomposition. Unfortunately, these
methods are not practical on a large scale, as they require order O(n3) operations for an n × n
matrix [2]. This motivates the need for more efficient numerical methods. Note that we primarily
consider consistent systems of equations, but we show through experiments that these methods also
seem to work for inconsistent systems.

The systems of linear equations that we consider are over-determined. In other words, systems of
linear equations where we have more equations than we do unknown variables. One of the many
contexts which give rise to over-determined systems of linear equations is CT scans [5]. The devel-
opment of CT scans was awarded the 1979 Nobel Prize in Medicine because of its vital importance
in modern medicine [7].

The method implemented in the first medical scanners in 1970 is known as the Algebraic Recon-
struction Technique (ART) [8], [9]. As it happens, the Algebraic Reconstruction Technique is a
rediscovery of an existing method, first introduced by Stefan Kaczmarz in 1937 [10], aptly referred
to as the Kaczmarz method in the context of Numerical Linear Algebra [8].

We detail the Kaczmarz method in Section 2.1. While the Kaczmarz method seemingly performs
well, we don’t have a proof of how it converges on general matrices. This is a problem addressed by
Strohmer and Vershynin in their 2009 paper, “A randomized Kaczmarz algorithm with exponential
convergence” [8]. They propose a variation on the Kaczmarz method, referred to as the Randomized
Kaczmarz method, which they prove converges with expected exponential rate. Moreover, they show
the rate of convergence can’t be improved by more than a constant factor. This paper spurred much
interest in the literature around the Kaczmarz method [11]–[15]. We discuss this method among
other variations in Section 2.

While the variations of the Kaczmarz method have interesting and useful properties that we can prove
about them, when performing computational experiments, they often don’t perform as well as the
standard Kaczmarz method from 1937. To that end, we sought a randomized method that we could
prove converges with an expected exponential rate, but computationally is similar to the standard
Kaczmarz method. In Section 3, we reveal this method, discuss how it compares computationally
from a high-level perspective, and give a proof of expected exponential convergence.

We run numerical experiments using MATLAB in Section 4. The experiments are run on both
randomly generated data as well as real-world data. The special case of having an orthogonal
matrix is also pointed out in Section 4.3, which gives an intuitive background for the method we
introduced in Section 3. Moreover, Section 4.3 serves as a good jumping board for us to compare the
methods against each other in Section 5. We conclude the report in Section 6, in which we discuss
what has been achieved, what has not, and potential directions for future investigation.

To aid the reader in keeping track of the various methods, we provide a summary of how each method
works in Table 2, Appendix A. Material not directly relevant to the discussion in the body of the
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report, but which we think is worth mentioning regardless, is given in the appendix and referenced
in the body where relevant. The code which we used to run the experiments in Section 4 is provided
in Appendix E, this code is heavily commented, which we hope will make it easily reusable.

2 The Kaczmarz Method and its variants

Consider the linear system
Ax = b, (1)

where A ∈ Rm×n is a matrix of full column rank (i.e. rank(A) = n), x ∈ Rn is an unknown vector
which we seek to find, and b ∈ Rm. Let this be an over-determined system, that is, m > n. Then,
given A and b, we are interested in numerically solving for x. We assume that the linear system is
consistent, so an exact solution exists. The Kaczmarz method, introduced by Kaczmarz in [10], is a
way to numerically solve for x.

Let the rows of A be denoted by aT
1 , . . . ,a

T
m, and let bi denote the i-th entry of b. Denote the k-th

iteration of our numerical solution for x by xk.

2.1 The Kaczmarz Method

In the Kaczmarz method we start with some initial guess x0. Given iteration xk, we orthogonally
project it onto the hyperplane ⟨ai,x⟩ = bi to obtain xk+1. The rows of A and entries of b are
selected sequentially. By repeatedly performing this orthogonal projection, we converge to x [8],
[10]. This can be written as

xk+1 := xk +
bi − aT

i xk

∥ai∥22
ai. (2)

Here, we use ∥ · ∥2 to denote the l2-norm. The algorithm for the Kaczmarz method, written in
pseudocode for the first K + 1 iterations, is given in Algorithm 1.

Algorithm 1 The Kaczmarz method

let x0 be some initial approximation
for k := 0 to K do

i := (k mod m) + 1

xk+1 := xk +
bi−aT

i xk

∥ai∥2
2

ai

end for

This procedure is shown graphically in Figure 1 for n = 2 dimensions and m = 3 equations.
The solution hyperplanes in this context correspond to straight lines. We cycle through the rows
sequentially, once we reach row m = 3, we go back to row 1. As we perform more iterations, we
approach the exact solution, x.

From this graphical example, it is easy to imagine examples where going through the rows of A
sequentially can be far from ideal. Consider the same system as in our graphical example but with
more solution hyperplanes, many of which have roughly the same gradient. Then, each iteration
leads to only a small change in xk. Depending on the real-world problem we are attempting to
solve, having sequential rows being similar is a reasonable concern. A natural way to tackle this is
to select the rows of A in some randomized fashion [16]. In [8], Strohmer and Vershynin prove that
a randomized version of the Kaczmarz method converges in expectation with exponential rate.
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Figure 1: A graphical example of the Kaczmarz method for m = 3, n = 2 with K = 4 iterations.
We use x⋆ to denote the exact solution.

2.2 The Randomized Kaczmarz Method

In [8], Strohmer and Vershynin propose selecting the rows of A randomly, with probabilities propor-
tional to the square of the row-norms, ∥ai∥22. They prove that this method, henceforth called the
Randomized Kaczmarz method, demonstrates expected exponential convergence. Moreover, they
give a bound on the rate of convergence; for iteration number k and exact solution x they show:

E∥xk − x∥22 ≤
(
1− κ(A)−2

)k · ∥x0 − x∥22, (3)

where κ(A) is the scaled condition number. The definition of the scaled condition number is somewhat
technical and beyond the scope of this report; it plays no notable role for the remainder of the report.
We only note that the scaled condition number is a function of the matrix A. Motivated readers
may refer to Appendix B to find the definition of the scaled condition number. Moreover, Strohmer
and Vershynin also show that their estimate cannot be improved beyond a constant factor, that is,
we can only improve the method by reducing the rate of convergence, 1− κ(A)−1.

In Algorithm 2 we give the algorithm for the Randomized Kaczmarz method for the first K iterations
in pseudocode.

Algorithm 2 The Randomized Kaczmarz method

let x0 be some initial approximation
compute ∥a1∥22, . . . , ∥am∥22
for k := 0 to K do

choose i from {1, . . . ,m} randomly with probability proportional to ∥a1∥22, . . . , ∥am∥22
xk+1 := xk +

bi−aT
i xk

∥ai∥2
2

ai

end for

Strohmer and Vershynin also introduce the Simple Randomized Kaczmarz method in [8]. In the
Simple Randomized Kaczmarz method, we sample the rows of A uniformly at random, with replace-
ment. This method also demonstrates exponential convergence, as is implied by the results in [17].
The algorithm for the Simple Randomized Kaczmarz method for the first K + 1 iterations is given
in pseudocode in Algorithm 3. The performance of the Simple Randomized Kaczmarz method is
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compared to the Randomized Kaczmarz method, among other methods, in Section 4. We make note
of the Simple Randomized Kaczmarz method as our novel method in Section 3 is based on it.

Algorithm 3 The Simple Randomized Kaczmarz method

let x0 be some initial approximation
for k := 0 to K do

choose i from {1, . . . ,m} randomly with uniform probability

xk+1 := xk +
bi−aT

i xk

∥ai∥2
2

ai

end for

Comparing the Randomized Kaczmarz method in Algorithm 2 with the standard Kaczmarz method
in Algorithm 1, it is clear to see that the Randomized Kaczmarz method has a larger computational
overhead from having to compute row-norms before we start the iterations. There is also more
computation required per iteration from having to randomly select rows, which is more intensive
than modulo calculations.1 We show in Section 4 that for many matrices this added computation
means that the Randomized Kaczmarz method is inferior to the standard Kaczmarz method when
considering the computational cost needed to attain a given error.

In [8] it was shown that for some systems of equations the Randomized Kaczmarz method outper-
forms the standard Kaczmarz method in terms of the number of iterations needed to reach a certain
error. In [18], Censor et al. point out that the Randomized Kaczmarz method is not superior to
the standard Kaczmarz method in general, a point corroborated by our numerical experiments in
Section 4. In [19], Strohmer and Vershynin clarify that assigning probabilities proportional to the
row-norms is not optimal and that the significant result from their paper [8] is showing the expected
exponential convergence of a Kaczmarz variant method. In Section 4 we show the Randomized
Kaczmarz method doesn’t outperform other (newer) randomized Kaczmarz variant methods.

From experiments in Section 4, we have reason to believe that the standard Kaczmarz method
outperforms the Randomized Kaczmarz method on most matrices when considering the number
of iterations and the amount of computation needed. The standard Kaczmarz method, however,
has no results to prove exponential convergence, unlike the Randomized Kaczmarz method. This
leads us to ask; are there methods that we can prove converge exponentially in expectation, but
also outperform the Randomized Kaczmarz method computationally? In Section 2.3 we discuss the
Sampling Kaczmarz-Motzkin method, introduced by De Loera et al. in [11], which does precisely
this. Then, in Section 3 we provide a novel method that, experimentally, outperforms the Sampling
Kaczmarz-Motzkin method.

2.3 The Sampling Kaczmarz-Motzkin Method

In [11], De Loera et al. combine the Simple Randomized Kaczmarz method with the Motzkin
method to produce the Sampling Kaczmarz-Motzkin method. The details of the Motzkin method,
also known as Greedy Kaczmarz [20], are not relevant to this report but are given in [11] and [21],
should the reader wish to look into it. De Loera et al. show that the Sampling Kaczmarz-Motzkin
method also demonstrates expected exponential convergence. From computational experiments in
[11] and Section 4 we see that the Sampling Kaczmarz-Motzkin method outperforms the Randomized
Kaczmarz method for most matrices when considering both the number of iterations required and
the computational cost. Note that we consider the Sampling Kaczmarz-Motzkin method with no
relaxation2 for a fair comparison between the methods, this decision is expanded on in Appendix C.

1This is later demonstrated in Figure 3.

2Relaxation: Multiplying the projection term
bi−aT

i xk

∥ai∥22
ai from Equation (2) by some scalar λ. This can improve

the rate of convergence; see Appendix C.
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Each iteration of the Sampling Kaczmarz-Motzkin method starts by choosing a subset of the rows
of A uniformly at random. The subset should be of size β, an integer which we pick. Then, we
choose the row i from that subset which gives the maximum residual, bi − aT

i xk. We provide the
pseudocode for the Sampling Kaczmarz-Motzkin method for the first K +1 iterations in Algorithm
4.

Algorithm 4 The Sampling Kaczmarz-Motzkin method

let x0 be some initial approximation
for k := 0 to K do

choose a subset τk+1 of size β from {1, . . . ,m} uniformly at random
choose ik+1 from the β rows such that ik+1 := argmaxi∈τk+1

|bi − aT
i xk|

xk+1 := xk +
bik−aT

ik
xk

∥aik
∥2
2

aik

end for

The Sampling Kaczmarz-Motzkin method has no overhead, unlike the Randomized Kaczmarz method.
However, at each iteration, we must compute the residual, |bi − aT

i xk|, for β rows. This is com-
putationally very intensive. Nonetheless, the improvements from choosing the rows in this way are
significant enough such that the Sampling Kaczmarz-Motzkin method still outperforms the Ran-
domized Kaczmarz method in terms of computational cost. In [11], De Loera et al. show that the
Sampling Kaczmarz-Motzkin method outperforms the Simple Randomized Kaczmarz method. We
replicate this result in Section 4 and show it also outperforms the Randomized Kaczmarz method.

When we compare the Sampling Kaczmarz-Motzkin method to the standard Kaczmarz method,
however, the standard Kaczmarz method still seems to outperform the Sampling Kaczmarz-Motzkin
method computationally. As with the Randomized Kaczmarz method, the benefit the Sampling
Kaczmarz-Motzkin method has over the standard Kaczmarz method is provable exponential con-
vergence.

So we ask, is there a method that is as computationally as efficient as the standard Kaczmarz
method, but with provable exponential convergence? This is the problem we tackle in Section 3.

3 The Modified Simple Randomized Kaczmarz Method

In the standard Kaczmarz method, we iterate through the rows of our matrix in order. In the
Randomized Kaczmarz method, we chose the rows of our matrix with probability proportional to
the square of the l2-norm of the row. In the Simple Randomized Kaczmarz method, we choose the
rows of our matrix uniformly at random.

Expected exponential convergence of the Randomized Kaczmarz method and the Simple Randomized
Kaczmarz method are shown in [8] and [17] respectively. In all of the aforementioned Kaczmarz
variant methods where we use random sampling, we sample the rows with replacement. We introduce
the Modified Simple Randomized Kaczmarz method, in which we sample the rows uniformly at
random without replacement. This is given in pseudocode in Algorithm 5 for the firstK+1 iterations.

We concede that this statement of the algorithm is quite non-specific and there are many ways to
implement this, particularly with respect to how we choose rows uniformly at random without re-
placement. It is, however, easy to understand from the context of the Simple Randomized Kaczmarz
method. This is also the natural way to state the algorithm, given the intuition behind it that we
provide in 4.3. Furthermore, it is easier to prove the expected exponential convergence when ex-
pressed in this way. Nonetheless, we provide a particular implementation using permutations in
Algorithm 6 which, in terms of the computational cost, is very efficient.
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Algorithm 5 The Modified Simple Randomized Kaczmarz method

let x0 be some initial approximation
for k := 0 to K do

choose i from {1, . . . ,m} randomly with uniform probability, without replacement. If all the
rows have been chosen, reset to the original set {1, . . . ,m}.

xk+1 := xk +
bik−aT

ik
xk

∥aik
∥2
2

aik

end for

With this implementation, we place the code for permutations before the code for projections in our
for loop. In Appendix E.3, we place the code for permutations after the code for projections. We
do so because we start indexing from 1 in MATLAB. Assuming there is no underlying pattern in
the ordering of the rows, these two should perform equivalently in practice.

Algorithm 6 The Modified Simple Randomized Kaczmarz method (permutation implementation)

let x0 be some initial approximation
for k := 0 to K do

if (k mod m) == 0 then
let P be some uniformly random m×m permutation matrix
A := PA
b := Pb

end if

i := (k mod m) + 1

xk+1 := xk +
bi−aT

i xk

∥ai∥2
2

ai

end for

Let us define a cycle to be a set of iteration such that every row has been sampled once. Notice
that one cycle of the Modified Simple Randomized Kaczmarz method is equivalent to the standard
Kaczmarz method but with the rows of the matrix A and the rows of b having been permuted. So,
one cycle of the Modified Simple Randomized Kaczmarz method can be equivalently implemented by
premultiplying our system by some random permutation matrix and applying the standard Kaczmarz
method. This is what we are doing in Algorithm 6.

To see the equivalence between these two forms more clearly, we draw the reader’s attention to
Figure 2. We show an example of a matrix with 5 rows. In Figure 2a we select the rows of A
uniformly at random, without replacement, and obtain the order 4, 2, 1, 3, 5. In the permutation
implementation, this would look as follows.

Premultiply the system Ax = b by P , where

P =


0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

 .

Note that the solution x for this permuted system, PAx = Pb, is the same.

Consider performing the standard Kaczmarz method for 5 iterations on PAx = Pb, this is illustrated
in Figure 2b. This is equivalent to performing the Modified Simple Randomized Kaczmarz method
(permutation implementation) with the specific realisations of random numbers and random matrix
mentioned before.
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(a) A with random row-selection without replacement (b) Permuted A with sequential row choices

Figure 2: Both of these selection methods results in the same order of rows being selected. For any
random row choice, there exists some permutation such that the rows can be chosen in order.

For the proof of expected exponential convergence, we consider the form expressed in Algorithm
5. When implementing the algorithm in code, however, we use the form expressed in Algorithm
6. Permuting the system is, computationally, a very cheap operation. To illustrate this, we use
MATLAB Profiler running the Modified Simple Randomized Kaczmarz method on the data from
Section 4.1. As can be seen from Figure 3, the most intensive part of the algorithm are projections
on Line 113, whereas the time for the modulo calculations and permutations (Line 115-119) add
around 25% of the time Line 113 does. Compared to the added computation cost from the other
methods, this extra 25% is comparatively very small. Part of the efficiency comes from the fact that
we are calling the random number generator only once every m iterations, rather than with every
single iteration.

Figure 3: The first column shows the time spent on that line in seconds, the second column shows how
many times that line has been run, the third column shows the line number in the file SingleTrial.m.
See Appendix E for the full code.

From experiments in Section 4, we find that the Modified Simple Randomized Kaczmarz method
and the standard Kaczmarz method are of comparable computational cost, whereas the Randomized
Kaczmarz method, the Simple Randomized Kaczmarz method, and the Sampling Kaczmarz-Motzkin
methods are all notably more expensive.

Now that we have an understanding of what the Modified Simple Randomized Kaczmarz method
is, we prove its error converges exponentially in expectation. This proof is adapted from the proof
of exponential convergence for an optimized randomized scheme in [17] by Dai et al. The proof by
Dai et al. for the optimized randomized scheme presumes randomized selection with replacement,
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whereas we give a proof for a method without replacement. In writing this report, we could not find
a proof of a randomized scheme where the rows are selected without replacement in the literature.
So this is a proof of not only a novel method, but for a different class of methods to those with
existing proofs.

3.1 Setup

The following setup is very similar to that in section ‘II. Optimized RKA’ in [17].

Let
Ãx = b̃,

where Ã ∈ Rm×n,m > n, is of full column rank, x ∈ Rn is the unknown vector, and b̃ ∈ Rm. Denote
the i-th row of Ã by ãT

i .

Restate the problem so that Ã has normalised rows and b̃ is scaled accordingly, that is,

Ax = b, where A := diag(∥ãT
1 ∥−1

2 , . . . , ∥ãT
m∥−1

2 )Ã, and b := diag(∥ãT
1 ∥−1

2 , . . . , ∥ãT
m∥−1

2 )b̃.

Let the i-th row of A be denoted by aT
i . Let x0 be the initial approximation of x. Recall from

Equation (2) that in the standard Kaczmarz method, given xk, we compute xk+1 as follows:

xk+1 = xk +
bi − aT

i xk

∥ai∥22
ai,

where i = (k mod m) + 1.

Consider picking the rows of A randomly with some probability vector p ∈ Rm, so pi ≥ 0 ∀i, and
1
Tp = 1, by the properties of probability vectors. Row i is selected with probability pi.

We make use of a property of the orthogonal projection operation. If we have vectors u and v, the
component of u in the v direction can be written as u sin(θ), where θ is the angle between u and
v. Therefore, as we define the xk by orthogonally projecting xk−1 onto some hyperplane, we can
write:

∥xk − x∥22 = ∥xk−1 − x∥22 sin2(αi), (4)

where αi denotes the angle between xk−1 − x and the hyperplane associated with the selected row,
ai. This is merely an extension of the orthogonal projection operation property.

As the row selection is random, we must look at the expected error. This is defined similarly to how
expectation is usually defined, we take the sum of errors weighed against the probability of that
error occurring.

Hence, we have that

E·|xk−1

[
∥xk − x∥22

]
= ∥xk−1 − x∥22

m∑
i=1

pi sin
2(αi),

where E·|xk−1
denotes the expectation given xk−1. For the sake of brevity, henceforth we will use E

to denote E·|x0
.
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3.2 Proof of convergence

Consider the first m iterations of the Modified Simple Randomized Kaczmarz method. Let the row
chosen on the k-th iteration (where k ≤ m) be denoted by j(k). We will sample the m rows of A

without replacement. Hence, the sequence
(
j(k)

)m
k=1

is a permutation of (1, . . . ,m). Let θ
(k)
i denote

the angle between xk − x and row ai. Let the probability distribution vector at iteration k + 1 be

denoted by p(k). We chose the row of A uniformly at random (i.e. p
(0)
i = 1

m , ∀i = 1, . . . ,m). So,

E
[
∥x1 − x∥22

]
= ∥x0 − x∥22

m∑
i=1

1

m
sin2

(
θ
(0)
i

)
.

Similarly, for the second iteration we get,

E
[
∥x2 − x∥22

]
= E

[
∥x1 − x∥22

] m∑
i=1

i ̸=j(1)

1

m− 1
sin2

(
θ
(1)
i

)
.

Notice that we only sum over m − 1 terms. This is because we have picked, without replacement,
one of the rows of A already (namely j(1)), so we can not pick it again. As we are picking uniformly

at random between m− 1 rows now, the probability of any given row being picked is 1
m−1 , i.e.

p
(1)
i =

{
1

m−1 ∀i ∈ {1, . . . ,m} \
{
j(1)

}
0 i = j(1)

.

Let us define the sequence (Ωl)
m−1
l=0 as follows:

Ω0 :=

m∑
i=1

1

m
sin2

(
θ
(0)
i

)
,

Ω1 :=

m∑
i=1

i̸=j(1)

1

m− 1
sin2

(
θ
(1)
i

)
,

. . .

Ωl :=

m∑
i=1

i/∈{j(1),...,j(l)}

1

m− l
sin2

(
θ
(l)
i

)
,

. . .

Ωm−1 := 1 · sin2
(
θ
(m−1)
j(m)

)
.
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Hence, we can write:

E
[
∥xk − x∥22

]
= E

[
∥xk−1 − x∥22

]
· Ωk−1

= E
[
∥xk−2 − x∥22

]
· Ωk−2 · Ωk−1

. . .

= E
[
∥x0 − x∥22

]
·
k−1∏
i=0

Ωi

= ∥x0 − x∥22 ·
k−1∏
i=0

Ωi

= ∥x0 − x∥22 · Ω(k),

where Ω(k) :=
∏k−1

i=0 Ωi. So,

E
[
∥xk − x∥22

]
= ∥x0 − x∥22 · Ω(k).

Claim: If m > n and k ∈ {0, . . . ,m− n− 1}, then Ωk < 1.
Proof: Assume for contradiction that m > n, k ∈ {0, . . . ,m− n− 1}, and Ωk = 1. Note that we
can’t have Ωk be strictly greater than 1, as 0 ≤ sin2 (θ) ≤ 1 for all values of θ, and by the law of
total probability 1Tp = 1. So,

Ωk = 1 ⇐⇒ sin2
(
θ
(k)
i

)
= 1, ∀i : p(k)i ̸= 0,

⇐⇒ cos
(
θ
(k)
i

)
= 0, ∀i : p(k)i ̸= 0,

⇐⇒ (xk − x) ⊥ ai, ∀i : p(k)i ̸= 0.

At iteration number k + 1, the vector p(k) has m − k non-zero entries. This is because we have
selected k rows, so the probability of them being selected again is 0. So the vector ai must be
orthogonal to xk −x for m− k distinct values of i. Note that m− k > n for k ∈ {0, . . . ,m− n− 1}.
As ai ∈ Rn and (xk − x) ∈ Rn, we can’t have xk − x be orthogonal to ai for m − k > n distinct
values of i. �. Hence, if m > n, then Ωk < 1 for k ∈ {0, . . . ,m− n− 1} . □

Therefore, for k ∈ {0, . . . ,m− n− 1} we have that Ωk < 1, and for k ∈ {m− n, . . . ,m− 1} we have
that Ωk ≤ 1. So, for k ∈ {1, . . . ,m}, we can write E

[
∥xk − x∥22

]
= ∥x0−x∥22 ·Ω(k), where Ω(k) < 1.

Once we reach k = m, we can reset k to 0 and repeat the process with probability vector p such
that pi =

1
m , ∀i = 1, . . . ,m.

Let Ω := Ω(m). Note that, if we start with our initial approximation on a hyperplane, Ω < 1
is a constant for a given matrix. This is because projections in different orders will result in the
same coefficient, Ω, at the end. This is a consequence of the angles between the hyperplanes being
fixed. When we repeat the process using the same hyperplanes as before, with iterations from
{m, . . . , 2m− 1}, the expected factor by which the error decreases is once again Ω. If we repeat this
process, we get expected exponential convergence in κ, where k = κm and κ is a positive integer. As
Ω < 1 is a constant, after k ∈ N>0 iterations, the expected factor of reduction in the error is Ωk/m.

3.3 Discussion

The Modified Simple Randomized Kaczmarz method converges exponentially when looking at cycles.
As it happens, this is not as tight as the bounds that exist for the Randomized Kaczmarz method
or the Sampling Kaczmarz-Motzkin method, as we find out in Section 5. However, from experi-
ments, the Simple Randomized Kaczmarz method is more computationally efficient than both of
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these. This is because we don’t need the random selection of rows on every iteration, which can
be computationally expensive, nor do we need to compute the row norms of A at the start of the
algorithm, so there is less overhead.

From experiments, the Modified Simple Randomized Kaczmarz method is basically as computa-
tionally efficient as the standard Kaczmarz method, and both are far cheaper than the Randomized
Kaczmarz method while offering essentially the same per-iteration improvement as we observe in the
Randomized Kaczmarz method. These advantages also extend to the Sampling Kaczmarz-Motzkin
method, the Modified Simple Randomized Kaczmarz method outperforms it in terms of the compu-
tational cost, but not the number of iterations.

Intuition suggests that the Modified Simple Randomized Kaczmarz method should be more robust
than the standard Kaczmarz method, as we change the order in which we sample the rows every
cycle, so a particularly unfortunate ordering of rows shouldn’t affect the Modified Simple Randomized
Kaczmarz method. However, as discussed in [19] with regards to the Randomized Kaczmarz method,
the main advantage that the Modified Simple Randomized Kaczmarz method would pose over the
standard Kaczmarz method is that we can prove it convergence exponential in expectation. The
advantage of the Modified Simple Randomized Kaczmarz method over the Randomized Kaczmarz
method and the Sampling Kaczmarz-Motzkin method would come from the computational costs.
However, this is not something we prove, rather it is something we observe from the experiments.

4 Numerical experiments using MATLAB

We will perform experiments to compare our model against existing methods using random and
real-world data, similarly to De Loera et al. in [11]. The specifications of the setup we used for the
experiments are detailed in Table 3 in Appendix F. The code used to run the experiments is given
in Appendix E. Given the setup of our problem, we focus primarily on consistent, over-determined
systems of linear equations, however, we also demonstrate that these results also seem to work in
the case of inconsistent systems.

In the random case, we randomly sample the entries in the matrix A. In the real-world data case,
we use existing an existing data set to set A. In both cases, We randomly generate the vector we
are trying to find, x. Using these, we create the vector b := Ax. We then run the methods, using
A and b as inputs, and compare the errors with respect to x. We keep track of the error at each
iteration and the time taken to compute each iteration.

Note that the following comparisons are not an exhaustive catalogue of the systems we have con-
sidered. We excluded similarly performing setups for the sake of brevity. Appendix E.1 contains the
vestigial code should a motivated reader wish to experiment further. To that end, we only consider
x where each entry is generated by the standard normal distribution.

In our graphs we often see the error plateau to some limiting value. In the case of consistent systems,
this is a result of how MATLAB deals with small values. We are bounded by how small the numbers
MATLAB can accurately perform computation are. This number is known as machine epsilon and
is approximately 2.22 × 10−16 for the MATLAB ‘double’ datatype [22]. If we take the value of
xk once it has plateaued and calculate the residual by ∥b−Axk∥, we obtain values roughly on the
10−15 order of magnitude. So the plateau is as a result of the residual bi − aT

i xk from Equation
(2) being within the realm of machine epsilon for MATLAB. With the systems we use, this usually
corresponds to errors in x of the order 10−29. Of course, all of these algorithms would converge
to 0 with more iterations, but for computing smaller errors, we need a computational setup with a
smaller machine epsilon. In the case of inconsistent systems, we often reach a limiting value quicker,
this is expanded upon by Wang et al. in [13].
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From [11], we know that (when not using relaxation) the optimal β value for the Sampling Kaczmarz-
Motzkin method is often small, within 10% of the number of rows m. In our numerical experiments,
we approximate the optimal value for β by trial and error using a binary search method. This method
may be prone to error and the value for β we find may not be optimal. Nonetheless, it should perform
similarly to the optimal β. This is a shortcoming of the Sampling Kaczmarz-Motzkin method, as we
don’t have an explicit way to find the optimal β. We discuss the difficulties in choosing β further in
Appendix D.

We first run the experiments for randomly generated data in Section 4.1, then real-world data in
Section 4.2, and finally in Section 4.3 we consider the special case of when A is orthogonal. Sections
4.1 and 4.2 will give us an idea of how these methods perform in general. We then use the curious
behaviour demonstrated in Section 4.3 to give some intuition into why these methods perform as
they do. This will give us the requisite information to compare the methods more generally in
Section 5.

4.1 Matrix A sampled from N (0, 1)

Consider the matrix A of dimensions 1000 × 100, where each entry of A is chosen by the standard
normal distribution, N (0, 1). We choose our exact solution x to have dimensions 100× 1 and have
each of its entries also chosen by the standard normal distribution. We define the 1000× 1 vector b
by b := Ax.

We compute the results for 10 realisation using the seeds 1, ..., 10 for our random number generator,
this is so our results can be easily replicated. We plot the log error against the computation time
required to get to that error. Note that the computation time may vary depending on background
processes the computer may be executing, so we may see some outlier realisations. As the methods
compare similarly when considering the log error against the number of iterations, we only plot
one realisation, for visual clarity in our graph. The code we use is included in Appendix E and is
thoroughly commented, should the reader wish to try this with a different number of realisations.

Running 10 realisations of each method for 10000 iterations, we obtain Figure 4. Note that we only
plot the first realisation Figure 4b. In both the consistent and inconsistent case we find that β = 6
works best for the Sampling Kaczmarz-Method.

(a) Log error against time, 10 realisations (b) Log error against iterations, 1 realisation

Figure 4: Consistent system with matrix A ∈ R1000×100 sampled from standard normal, vector
x ∈ R100×1 sampled from standard normal.
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Many of the problems we are interested in solving give rise to inconsistent systems. So far, we have
only discussed these methods in the context of consistent systems. What happens if the system is
inconsistent? This is shown in Figure 5. We can obtain an inconsistent system from our consistent
system by adding a small, normally distributed noise term to b. For each entry in b we add a random
realisation of N (0, 0.01). Because of the random noise, the value to which the methods converge
varies [12], so for clarity in the graph we only plot one realisation. As this system converges much
faster, we only consider the first 3000 iterations.

(a) Log error against time, 1 realisations (b) Log error against iterations, 1 realisation

Figure 5: Inconsistent system with matrix A ∈ R1000×100 sampled from standard normal, vector
x ∈ R100×1 sampled from standard normal, with noise term N (0, 0.01) on b. We use β = 6 for the
Sampling Kaczmarz-Motzkin method.

Of course, when using these methods with real-world applications there may be underlying patterns
that affect how these methods perform against each other. In Section 4.2 we test these methods
using real-world data.

4.2 Real-world data

Here we recreate one of the real-world experiments performed by De Loera et al. in [11]. The
problem arises in the context of machine learning. We attempt to classify data points given some
attributes, one method by which we can do this is using a Support-vector Machine (SVM) model.
The precise method by which SVM works is not relevant for this report, we only point out that
solving an over-determined system of linear equations is part of the process.

The data we use is from the ‘Breast Cancer Wisconsin (Diagnostic) Data Set’ 3 from the UCI Machine
Learning Repository [23]. We use this data set to set the matrix A, which will have dimensions
569 × 30. Here, the 569 rows correspond to different patients and the 32 columns correspond to
different attributes that were measured. This data set has no missing values and the attributes are
all real-valued.

We use this data set to create a linear system, as in [11]. De Loera et al. generate b as b = ...

10ˆ(−6)*ones(m, 1);, i.e. a vector of size m × 1 where each entry is 10−6. They then run their
experiments, keeping track of the error ∥b − Axk∥22. However, we first generate a x, as we did in

3We only experiment on this data set and not the ‘Credit Card Default Data Set’ from [11] because that data set
leads to convergence in far fewer iterations than there are rows. So it is not useful for us to distinguish between the
methods.
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4.1, and then define b := Ax. We compute the error as ∥x−xk∥22 for the sake of consistency within
this report.

The results after performing 10000 iterations with random seed 1 is shown in Figure 6. Note
that, while the Sampling Kaczmarz-Motzkin method is faster in terms of the number of iterations,
it does not outperform the Modified Simple Randomized Kaczmarz method when looking at the
computational time. Part of the reason for this is that the Sampling Kaczmarz-Motzkin method is
much more computationally expensive per iteration, as we discussed in 2.3.

(a) Error against number of iterations (b) Error against computation time

Figure 6: Real-world experiment with data from the Wisconsin (Diagnostic) Breast Cancer data set
[23], A has dimensions of 569 × 30. We use β = 10 as that seems to be roughly optimal from our
experiments, this differs from the value given in [11], see Appendix D for further discussion.

So why is it that non-greedy methods that sample the rows without replacement perform as well
as they do? While we don’t have a rigorous justification, in Section 4.3 we give a specific example
where sampling each row at least once is a natural choice. We suggest that this reasoning extends
to non-special cases as well, albeit to a lesser extent.

4.3 Special case of A orthogonal

Take the case when the matrix A is square and orthogonal. Of course, with this setup, we can
compute the exact value of x as AT b, which is computationally a very cheap operation. However,
we take the time to explore this setup as it demonstrates behaviour that, at first glance, may seem
very unusual, but with deeper consideration gives us an intuitive insight into the pros and cons
of the different methods. This special case was noticed by Yuji Nakatsukasa for the Randomized
Kaczmarz Method [24].

Consider the case when A is a square, orthogonal matrix. To generate this matrix, we take the
Q-component of a QR-decomposition of an m×m matrix where each entry has been sampled from
the standard normal distribution. We will refer to this matrix as having ‘no noise’. This can be
generated in MATLAB as follows.

1 [A, ] = qr(randn(m));

Using this matrix A with parametersm = 300, n = 300, K = 6000 iterations, and r = 10 realisations,
we obtain Figure 7a. Consider adding another randomly generated matrix, with entries from the
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standard normal, which has been scaled by a factor of 10−5. This resultant matrix, which we will
refer to as ‘A with noise’, is almost orthogonal. This can be generated in MATLAB as follows.

1 [A, ] = qr(randn(m)); A = A + randn(m) * 1e−5;

Using this matrix A with noise, with the same parameters as before, we obtain Figure 7b. Note that
the standard Kaczmarz method and the Modified Simple Randomized Kaczmarz method perform
almost identically for reasons we will explain later.

(a) Orthogonal A with no noise (b) Orthogonal A with noise of order 10−5

Figure 7: Consistent system with A ∈ R300×300 orthogonal and vector x ∈ R300×1 sampled from
standard normal. We use β = 12 for Sampling Kaczmarz-Motzkin again.4

We observe a ‘sudden convergence’ to 0 when A is orthogonal, or orthogonal with some noise term.
When we have a noise term, we observe periodic occurrences of the sudden convergence. What are
these phenomena, and why do the different methods vary in the number of iterations required to
display this sudden convergence? We answer these questions for the system with no noise first, then
the system with noise is a simple extension.

Fundamentally, all we are observing with the sudden convergence in Figure 7a is the algorithm
finding the exact value of x. As MATLAB can only perform computations to a precision of machine
epsilon, once the exact solution for x is found, we still record an error in the order of 10−29 in x.

To see why we find the exact value, we ask the reader to consider Figure 1 once again. As the rows
of A are orthogonal, the hyperplanes ⟨ai,x⟩ = bi which we project onto are also orthogonal. Note
that if we project onto hyperplane i, then the component of our error in the direction of the i-th
hyperplane is now 0. In terms of Equation (4), after we have projected onto every single hyperplane,
whichever hyperplane i we choose next, the angle between our approximation and hyperplane i will
be αi = 0. So, sin2(αi) will be 0, therefore, the error will be 0. So sudden convergence happens
when every hyperplane has been visited. The sudden drop is a result of going from some non-zero
error to 0.

The idea of needing to project onto every hyperplane at least once gives us insight into why the
different methods differ in the number of iterations needed to converge suddenly. Both the standard
Kaczmarz and the Modified Simple Randomized Kaczmarz method obtain the minimum necessary
iterations for convergence, which is simply the number of orthogonal rows A has because in each of

4The optimal value, when considering the number of iterations, in this case would just be β = 300. With this value
of β the method performs near identically to the standard Kaczmarz and the Modified Simple Randomized Kaczmarz
methods. Note that we are not interested in the computation time here, just the sudden convergence.
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these methods we can’t project onto a hyperplane we have already selected until we have selected
every other hyperplane first. If we had chosen β = 300 (which is optimal), the Sampling Kaczmarz-
Motzkin method would also converge suddenly in 300 iterations, as it greedily selects the row with
the largest residual, which will always be a row we haven’t selected yet.

With the other randomized variants of the Kaczmarz method, because we select rows randomly with
replacement, the number of iterations can vary. There is no stipulation to select a hyperplane we
‘haven’t yet selected’ or the one with the largest residual. So, they take more iterations as they keep
projecting onto hyperplanes they have already projected onto. If we project onto a hyperplane i that
has been selected before, the angle between our approximation and hyperplane i will be αi = π/2.
So, from Equation (4), the error will reduce by a factor of sin2(αi) = 1, i.e. it doesn’t change. This
corresponds to segments with a flat, horizontal line in Figure 7.

The probability that the Simple Randomized Kaczmarz converges suddenly in k iterations is equi-
valent to asking, ‘What is the probability that one of the rows hasn’t been selected in k iterations?’
For k < m, where m is the number of rows, this is 0 as not all the rows have been selected yet. For
k ≥ m it is (

m− 1

m

)k

·m.

Note that
(
m−1
m

)k
corresponds to the probability that some particular row hasn’t been selected in

k iterations, we then multiply this by the number of rows m to obtain the expression above. A
similar procedure can be done to obtain the probability for the Randomized Kaczmarz Method, but
we would have to take the different probability masses for each row into account.

This procedure is occurring repeatedly in Figure 7b. As we have a noise term in the order of 10−5,
we don’t reach an error of exactly 0. Instead, after the first sudden convergence, the error ∥b−Axk∥2
gets to within 10−6. This corresponds to an error of magnitude 10−5 or 10−6 for ∥x−xk∥2. Instead
of dropping to a 0 error we drop to 10−6, with the next sudden convergence we drop to an error of
order 10−12 in ∥b−Axk∥2, then 10−18, and so on ad infinitum. Note that the error ∥b−Axk∥2 will
be different to the error ∥x− xk∥2, which is what we plot.

This behaviour illustrates why we might want to select rows without replacement, as in certain
cases projecting onto hyperplanes we have already selected may not give us any more information,
so we should refrain from selecting them until we have tried the others. This is the key idea behind
our Modified Simple Randomized Kaczmarz method. We also note that the Simple Randomized
Kaczmarz Method is robust against patterns in the rows (e.g. the first m/2 rows being the same),
unlike the standard Kaczmarz method (which would iterate through the first m/2 rows in order). So,
it may be the case that with certain matrices the Modified Simple Randomized Kaczmarz method
attains some error bound slightly quicker than the standard Kaczmarz method. The maximum
number of iterations the Modified Simple Randomized Kaczmarz method can be quicker by is, at
most, m. This is because it needs to select every row at least once before the next cycle, as with
the standard Kaczmarz method. This brings us to Section 5 where we discuss how the methods
compare more generally.

5 Comparing the methods

From Section 4.3 we have some insight into why it may be advantageous to not repeat a row
selection till we have tried every other row. Is this also the case for non-orthogonal A? While we
haven’t proven it to be the case, experiments from Sections 4.1 and 4.2 certainly seem to suggest so.
Motivated readers may wish to run the code in Appendix E to corroborate this. In general, with the
classes of linear systems explored in Appendix E.1 and the real-world data we tried, the standard
Kaczmarz method and the Modified Simple Randomized Kaczmarz method perform very similarly,
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and they often outperform the Simple Randomized Kaczmarz and Randomized Kaczmarz methods
in terms of the number of iterations. This could be suggestive of the idea that row-selection without
replacement is superior to row-selection with replacement, though this is not something we have
proved.

It is worth noting, however, that trying to minimize the number of iterations can be a red herring.
Our main goal is to solve the system as efficiently as possible, to that end, we suggest that computa-
tional time is a better metric to use in comparing the methods against each other. This is highlighted
by the Sampling Kaczmarz-Motzkin method, it outperforms every other method by a great deal in
terms of the number of iterations needed, however, each iteration is much more computationally
intensive. So when looking at computation time, it doesn’t do as well as the standard Kaczmarz
method or the Modified Simple Randomized Kaczmarz method. The Sampling Kaczmarz-Motzkin
method does, however, outperform the Simple Randomized Kaczmarz method and the Randomized
Kaczmarz method when we choose a reasonably good value for β. Though, we don’t have an efficient
way to find the optimal value for β. Furthermore, we suggest that, depending on the implementation
of the method in code, the optimal value for β will also depend on the nature of the hardware and
software on which the method is run, which further complicates the matter of choosing a good value
for β. We expand on this idea in Appendix D.

The standard Kaczmarz method can perform just as well as, and often slightly better than, our
Modified Simple Randomized Kaczmarz method when looking at computation time. The stand-
ard Kaczmarz method, however, does not have a proof for its exponential convergence, which is
something every other method we have stated does have. In [19], Strohmer and Vershynin cite this
provable expected exponential convergence as a benefit of the Randomized Kaczmarz method over
the standard Kaczmarz method. The paper [19] was written in response to [18] by Censor et al.,
who point to the fact that the standard Kaczmarz method, in general, outperforms the Random-
ized Kaczmarz method in terms of the number of iterations, as a reason for the inferiority of the
Randomized Kaczmarz method.

The Sampling Kaczmarz-Motzkin method goes some way in addressing these issues, by both demon-
strating provable expected exponential convergence, while also outperforming the Randomized Kaczmarz
method [11]. However, it still falls short of the standard Kaczmarz method.5

This is how our Modified Simple Randomized Kaczmarz method fits into the family of existing
methods. It performs very similarly to the standard Kaczmarz method with only a very small extra
computation cost per iteration, but also provably converges exponentially in expectation.

In our proof of convergence for the Modified Simple Randomized Kaczmarz method in Section 3.2,
we show that the factor by which the error decreases after cycles of m iterations is just some constant
Ω < 1. However, we don’t have a tighter bound on this constant, which is something that exists for
the Randomized Kaczmarz method and the Sampling Kaczmarz-Motzkin method. These bounds
are shown in Table 1.

So, while the Modified Simple Randomized Kaczmarz method doesn’t unilaterally outperform the
existing methods in every way, it still stands as a method with various benefits over the exist-
ing methods. We conclude with a discussion on what exactly this report has achieved, why it is
important, and where we can go from here.

5See Section 4.1 for comparison to the standard Kaczmarz method
6See Appendix B for definitions of these terms. The specific bounds are not relevant to our discussion, we only

point out the fact that they exist.
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Method Upper bound after m iterations

Randomized Kaczmarz [8] (1− κ(A)−2)m

Sampling Kaczmarz-Motzkin [25] (1− ∥A−1∥−2
2 ·m−1)m

Modified Simple Randomized Kaczmarz some constant Ω < 1

Table 1: Upper bound for the expected reduction in error after m iterations for each method. Here, κ(A)
refers to the scaled condition number of A, and ∥A−1∥2 is the spectral norm of the left inverse of A.6

6 Conclusion

In this report, we considered various numerical methods to approximate the solution to a large,
consistent, over-determined, system of linear equations, Ax = b. A well-known way to do this is
using the Kaczmarz method, and there exist many different variations upon the Kaczmarz method
[8], [11], [14], [20]. The primary way in which the methods we discuss differ is in the way in which
they select the rows of A. Not only do we compare the different methods and their various strengths
and weaknesses, we think about the idea of row-selection more generally.

First, we looked at existing methods in Section 2. With the Kaczmarz method, we don’t have a proof
that the error reduces exponentially for general matrices. We consider variations of the Kaczmarz
method, namely the Randomized Kaczmarz method and Simple Randomized Kaczmarz method
from Strohmer and Vershynin [8], and the Sampling Kaczmarz-Motzkin method from De Loera et
al. [11]. Under these methods, we can prove that the error reduces exponentially in expectation for
general matrices. However, these methods are computationally more expensive than the standard
Kaczmarz method.

To go some way in remedying this issue, we proposed the Modified Simple Randomized Kaczmarz
method. We proved in Section 3 that with this method the error reduces exponentially in expectation,
and showed via numerical experiments that often it is often more computationally efficient than the
methods of Strohmer and Vershynin or De Loera et al.

As far as we can tell, the proof we provide in Section 3.2 differs from proofs of other methods in the
literature in an important way. Of the methods we have seen discussed in the literature, they all
sample from the rows of A with replacement, whereas in our method we sample without replacement.
The special case of having the matrix A being orthogonal, which we considered in Section 4.3, quite
naturally motivates this form of row-selection.

The other experiments that we conducted in Section 4 show that much of the time our method
performs just as well as the Kaczmarz method, and occasionally better. We credit this to the highly
efficient implementation in Algorithm 6. We also suggest that the Modified Simple Randomized
Kaczmarz method can be more robust than the standard Kaczmarz method, as it won’t be affected
by unfavourable initial row orderings.

However, our method has some shortcomings that we discuss in Section 6. Both the Randomized
Kaczmarz method and the Sampling Kaczmarz-Motzkin method have tighter bounds on convergence
than we were able to give. Though, we think the experiments in Section 4 indicate that the Modified
Simple Randomized Kaczmarz method could be provably better than the Randomized Kaczmarz or
Sampling Kaczmarz-Motzkin methods.
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It is also worth noting that with the Randomized Kaczmarz method, there is much more literature
around it, proving the usability of it, or one of its variants, in a range of contexts. We particularly
point out the following papers which; provide the exact mean squared error for inconsistent systems
[12], show convergence even with a noise term [26], convergence to the minimum Euclidean norm in
the least-squares case [27] for both over- and under-determined systems [15], [28]. We also point out
that in the original paper by Strohmer and Vershynin, they give a proof for complex linear systems
(i.e. taking values in C), whereas we considered a real linear system (i.e. taking values in R), though
this is a relatively simple extension we ignore for simplicity, as we were emulating the proof in [17].

We believe that many of these properties can be extended to the Modified Simple Randomized
Kaczmarz method. In particular, we point to Figure 5 to show the method does work in the
inconsistent case as well. In [19], Strohmer and Vershynin invited the reader to come up with a
method that is provably better than the Randomized Kaczmarz method. As we were limited by
time, we were unable to prove that the Modified Simple Randomized Kaczmarz is provably better
than existing methods, nonetheless, we hope that report provides enough evidence to say that it is
a likely candidate.

Going beyond the Modified Simple Randomized Kaczmarz method, we emphasise the use of com-
putation time when comparing methods, rather than the number of iterations. It may need more
careful consideration, but is a better metric to measure errors against than the number of iterations,
which can be counterproductive to the goal of finding solutions efficiently. We also hope that this
report does enough to suggest that random sampling of rows without replacement merits further
investigation. To parrot Strohmer and Vershynin in [19], ‘it is absolutely possible that somebody,
maybe the reader of this note, will come up with a version of the randomized Kaczmarz method
that is provably better than the one we proposed.’
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A Methods summary

Here we provide a quick reference guide to aid the reader. We summarise the row selection rule for
each method.

Method name Row selection rule Rows
replaced?

The (standard)
Kaczmarz method

Cycle through the rows in the given order. Once we
reach the end, we start again. (See Algorithm 1)

N/A

The Randomized
Kaczmarz method

Pick rows randomly with probability proportional to
their row norms. (See Algorithm 2)

Yes

The Simple
Randomized
Kaczmarz method

Pick rows randomly with uniform probability. (See Al-
gorithm 3)

Yes

The Sampling
Kaczmarz-Motzkin
method

Pick a subset of the rows of size β randomly with uni-
form probability. From this subset, select the row which
has the greatest residual. (See Algorithm 4)

Yes

The Modified
Simple Randomized
Kaczmarz Method

Pick rows randomly with uniform probability. Once
every row has been selected, we start again. (See Al-
gorithm 5.)

No

Table 2: Quick reference guide of how each method selects the rows

B The Scaled Condition Number

In [8], Strohmer and Vershynin make use of the scaled condition number, κ(A), to give an upper
bound for the expected rate of convergence for the Randomized Kaczmarz method. The scaled
condition number for a matrix A, as defined by Demmel in [29], is

κ(A) := ∥A∥F ∥A−1∥2.

Here, A−1 denotes the left-inverse of A, that is, A−1A = In, The left inverse is assumed to exist as we
assume A is of full column rank (i.e. rank(A) = n) and m > n. We use ∥ · ∥F and ∥ · ∥2 to denote the
Frobenius norm and the Spectral norm respectively. For a real matrix, the Frobenius norm is simply
the square root of the sum of the squares of the elements [30]. For matrix A = (ai,j)i=1,...,m, j=1,...,n

this can be written as

∥A∥F :=

 m∑
i=1

n∑
j=1

a2i,j

 .

We adapt the definition of the spectral norm in [31] for real matrices. Let AT denote the transpose
of A, and let α be the maximum eigenvalue of ATA. Then,

∥A∥2 := α
1
2 .
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So, for real matrix A, the scaled condition number is ∥A∥F ∥A−1∥2, where ∥ · ∥F , ∥ · ∥2, and A−1 are
as defined above. Note that the scaled condition number can be arbitrarily large, regardless of the
size of the matrix. So for matrices with a large scaled condition number, the rate of convergence
will mainly be governed by the size of the scaled condition number and not the size of the matrix.
Matrices with large condition numbers, e.g. κ(A) > 1010, are known as ill-conditioned [32]. Even
with ill-conditioned matrices, we expect exponential convergence, as can be seen from the bounds
in Table 1.

C Relaxation

It has been noted by Strohmer and Vershynin in [8] that the Randomized Kaczmarz method can be

improved by multiplying the
bi−aT

i xk

∥ai∥2
2

ai term from Equation (2) by some scalar λ. This is known

as relaxation; if 0 < λ < 1 then we call this under-relaxation and if 1 < λ < 2 we call this over-
relaxation [21]. Note that we need λ to be in this range for consistent systems to ensure convergence
[8], [33].

This is a well-known phenomenon in the literature that many methods make use of [21], [33], [34],
including the Sampling Kaczmarz-Motzkin method. In [11], De Loera et al. also compare how
the Sampling Kaczmarz-Motzkin method performs with different relaxation parameters λ, and it is
rarely the case that λ = 1 (i.e. no relaxation) is optimal.

From cursory experiments, we found that our Modified Simple Randomized Kaczmarz method can
also be improved through a carefully chosen relaxation parameter. However, we haven’t proved it
to be the case, nor do we have general guidelines for picking an optimal value of λ.

The standard Kaczmarz and the Randomized Kaczmarz methods don’t make use of a relaxation
parameter, so we only compare them against the Sampling Kaczmarz-Motzkin method with no
relaxation parameter. This also saves us from having to find an optimal value for λ for each method.
As most of the methods seem to benefit similarly through relaxation, we believe that ignoring
relaxation is a fair choice.

D Optimal β with the Sampling Kaczmarz-Motzkin method

We don’t have an efficient way to find the optimal value (in terms of computational cost) for β in
the Sampling Kaczmarz-Motzkin method [11]. While larger values of β are better when considering
the number of iterations (with β = m being optimal), this comes with a much larger computation
cost per iteration. De Loera et al. mention that the optimal value for β is rarely 1 or m, which
correspond to the Simple Randomized Kaczmarz method and Motzkin method respectively.

The way the method is implemented and the hardware on which the method is run can also play a
role in this. In Section 4.2 we see that the optimal value for β that we found (β ≈ 10) differs from
the one in [11] (β ≈ 150). One reason for this is how the methods are implemented, specifically in
regards to how the row with the largest residual is chosen at each iteration. We can see in Appendix
E.2 that we find the row with the largest residual as follows.

1 tau k = randi(m, 1, beta); % Choose beta rows of A uniformly at random
2

3 % Compute residual for each of the previously selected rows
4 resids = zeros(1, beta);
5 for iter=1:beta
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6 resids(iter) = abs(A(tau k(iter),:)*x SKM − b(tau k(iter)));
7 end
8

9 % Choose row of A from the subset with maximum residual
10 [ , t] = max(resids); % t is the index of max value in resids
11 i = tau k(t); % Index of max value in A

In [11] it is found as follows.

1 function [l,a] = maxviolatedofsample constraint(A,b,x,beta)
2

3 %l : amount of violation
4 %a : row of A (hyperplane normal) that defines the most violated constraint inside
5 %the sample of size beta
6

7 m = size(A,1); %number of inequalities
8

9 perm=randsample(m,beta);
10

11 [l,ind]=max(A(perm(1:size(perm,1)),:)*x−b(perm(1:size(perm,1))));
12 a=A(perm(ind),:);
13

14 l = max(l,0);
15

16 end

These implementations could result in different optimal values for β. We believe that using what
we found to be a near-optimal value of β using our implementation is most fair for the comparisons.
This is because when we tried the method in [11], it performed worse. While we could replicate the
figures they produced, we couldn’t replicate their implementation’s superiority over the Randomized
Kaczmarz method, whereas we could within our code. Hence we think using our implementation is
better. These differences could be as a result of the different hardware on which we ran the tests,
we give the technical specifications of our hardware and software in Appendix F.

Notice that given a subset of rows τk, we can calculate the residual for each of the rows independently,
i.e. they are not dependent on one another. So we can compute the residuals for rows in our sample in
parallel. Having more capacity to perform these calculations in parallel will lead to less computation
time per iteration as well as a greater optimal value for β on that system. The implementation we
used does not take advantage of this ability to compute residuals in parallel.

With certain implementations of the Sampling Kaczmarz-Motzkin method, the optimal value for
β is not only dependent on the linear system but also the parallel processing capabilities of the
hardware and software that it is run on.

E MATLAB Code

We include the code used to conduct the numerical experiments here. The code is commented to
aid future reuse. In the file Data.m the user may set up classes of linear systems different to those
discussed in this report.

The Data.m file generates the linear system Ax = b. The function Data is used in SingleTrial.m,
which executes each of the methods, storing the error and time taken at each iteration. In main.m

we repeat SingleTrail.m for r realisations with seeds 1, ..., r, then we plot the results.
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E.1 Data.m

In this file we generate the system of linear equations, A*x exact = b. The Data.m function takes
the size of the matrix A as m × n and a random seed as inputs. We leave residual code that was
used in testing but wasn’t written about, should the reader wish to experiment further.

1 % Generate the system
2 % Comment / uncomment section for the relevant setup.
3

4 function [A, b, x exact] = Data(m, n, seed)
5 rng(seed) % Set random seed
6

7 %%% Choose the method for generating random matrix A
8 A = normrnd(0, 1, [m, n]); % Sampled from N(0, 1) distribution
9 % A = gallery('randsvd', [m, n], 1); % Well−conditioned matrix

10 % A = rand(m, n); % Sampled from Unif(0, 1) ...
distribution

11 % [A, ] = qr(randn(m)); % Orthogonal A
12 % [A, ] = qr(randn(m)); A = A + randn(m) * 1e−5; % Orthogonal A with noise
13

14 % Matrix with normally distributed rows, with variance increasing
15 % proportial to row number
16 % A = zeros(m, n);
17 % for i=1:m
18 % A(i,:) = normrnd(0, i/(nˆ0.5), [1, n]);
19 % end
20

21 %%% Choose the exact value of x
22 x exact = normrnd(0, 1, [n, 1]); % Sampled from N(0, 1) distribution
23 % x exact = rand(n, 1); % Sampled from Unif(0, 1) distribution
24

25 %%% Choose to make the system consistent or inconsistent with some small
26 %%% added noise term that is normally distributed with a small variance
27 b = A*x exact; % Consistent system
28 % b = A*x exact + normrnd(0, 0.01, [n, 1])'; % Added normal noise term
29 end

E.2 SingleTrial.m

This function runs each method once using the given parameters and outputs the error and time
taken at each iteration, for each method. The inputs are m, n, K, seed, where m × n is the
dimensions of our matrix A, K is the number of iterations to run, and seed is the seed that the
random number generator uses.

The outputs are E K, E SRK, E RK, E SKM, E MSRK, T K, T SRK, T RK, T SKM, T MSRK. Each of
these outputs is a list of length K. The variables with the prefix “E ” store the error at each iteration,
and the variables with prefix “T ” store the time taken at each iteration. The suffix represents the
specific method.

Key: Kaczmarz (K), Simple Randomized Kaczmarz (SRK), Randomized Kaczmarz (RK), Sampling
Kaczmarz-Motzkin (SKM), Modified Simple Randomized Kaczmarz (MSRK).

1 function [E K, E SRK, E RK, E SKM, E MSRK, T K, T SRK, T RK, T SKM, T MSRK]...
2 = SingleTrial(m, n, K, seed)
3 %% Setup
4 [A, b, x exact] = Data(m, n, seed);
5

6 % Initial guesses (i.e. x 0)
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7 x K = zeros(n, 1); x SRK = zeros(n, 1);
8 x RK = zeros(n, 1); x MSRK = zeros(n, 1);
9 x SKM = zeros(n, 1);

10

11 % Initialise list of errors at each iteration
12 E K temp = zeros(1, K); E SRK temp = zeros(1, K);
13 E RK temp = zeros(1, K); E MSRK temp = zeros(1, K);
14 E SKM temp = zeros(1, K);
15

16 % Initialise list of times at each iteration
17 T K temp = zeros(1, K); T SRK temp = zeros(1, K);
18 T RK temp = zeros(1, K); T MSRK temp = zeros(1, K);
19 T SKM temp = zeros(1, K);
20

21 %% Standard Kaczmarz
22 for k=1:K
23 start = tic;
24 i = mod(k, m) + 1; % Pick the row
25 x K = x K + ((b(i) − A(i,:)*x K)/(norm(A(i,:), 2)ˆ2)) * A(i,:).';
26

27 T K temp(k) = toc(start);
28 E K temp(k) = norm(x K − x exact, 2)ˆ2;
29 end
30 E K = E K temp; T K = T K temp;
31

32

33 %% Simple Randomized Kaczmarz
34 for k=1:K
35 start = tic;
36 i = randi(m); % Pick a row uniformly at random
37 x SRK = x SRK + ((b(i) − A(i,:)*x SRK)/(norm(A(i,:), 2)ˆ2)) * A(i,:).';
38

39 T SRK temp(k) = toc(start);
40 E SRK temp(k) = norm(x SRK − x exact, 2)ˆ2;
41 end
42 E SRK = E SRK temp; T SRK = T SRK temp;
43

44

45 %% Randomized Kaczmarz
46 % Setting array of probabilities
47 p = zeros(1, m);
48 A F2 = norm(A, 'fro')ˆ2; % Square of the Frobenius norm of A, used ...

to normalise p
49 for j=1:m % Compute probability for each row
50 p(j) = (norm(A(j,:), 2)ˆ2)/A F2;
51 end
52 cp = [0, cumsum(p)]; % Cumulative sum of probabilities
53

54 % Run iterations
55 for k=1:K
56 start = tic;
57

58 i = find(rand>cp, 1, 'last'); % Row index for this random iteration
59 x RK = x RK + ((b(i) − A(i,:)*x RK)/(norm(A(i,:), 2)ˆ2)) * A(i,:).';
60

61 T RK temp(k) = toc(start);
62 E RK temp(k) = norm(x RK − x exact, 2)ˆ2;
63 end
64 E RK = E RK temp; T RK = T RK temp;
65

66

67 %% Sampling Kaczmarz−Motzkin
68 beta = 12;
69 for k=1:K
70 start = tic;
71 tau k = randi(m, 1, beta); % Choose beta rows of A uniformly at random
72

73 % Compute residual for each of the previously selected rows
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74 resids = zeros(1, beta);
75 for iter=1:beta
76 resids(iter) = abs(A(tau k(iter),:)*x SKM − b(tau k(iter)));
77 end
78

79 % Choose row of A from the subset with maximum residual
80 [ , t] = max(resids); % t is the index of max value in resids
81 i = tau k(t); % Index of max value in A
82

83 x SKM = x SKM + ((b(i) − A(i,:)*x SKM)/(norm(A(i,:),2)ˆ2)) * A(i,:).';
84

85 T SKM temp(k) = toc(start);
86 E SKM temp(k) = norm(x SKM − x exact, 2)ˆ2;
87 end
88 E SKM = E SKM temp; T SKM = T SKM temp;
89

90

91 %% Modified Simple Randomized Kaczmarz
92 AA = A; bb = b; % AA and bb are the permuted versions of A and b
93 for k=1:K
94 start = tic;
95 i = mod(k, m) + 1;
96 x MSRK = x MSRK + ((bb(i) − AA(i,:)*x MSRK)/(norm(AA(i,:), 2)ˆ2)) * AA(i,:).';
97

98 if mod(k, m) == 0
99 P = randperm(m);

100 AA = AA(P,:);
101 bb = bb(P);
102 end
103

104 T MSRK temp(k) = toc(start);
105 E MSRK temp(k) = norm(x MSRK − x exact, 2)ˆ2;
106 end
107 E MSRK = E MSRK temp; T MSRK = T MSRK temp;
108 end

E.3 main.m

We run each of the methods for 10 realisations with different systems and different random seeds.
We set up our linear systems in the file Data.m. We make use of the function SingleTrial which
runs each of the methods once and outputs, for each method, the list of errors and times for each
iteration. Finally, we plot the results.

1 %% Setup
2 % Set parameters
3 r = 10; % Number of realisations
4 m = 1000; n = 100; % Dimensions of our matrix A
5 K = 10000; % Number of iterations
6

7 % Set up lists of errors and times for each method. The dimensions are r*K,
8 % where r is the number of realisations and K is the number of iterations
9 % that we are computing.

10

11 % Initialise list of least−square errors
12 E K = zeros(r, K); E SRK = zeros(r, K);
13 E RK = zeros(r, K); E MSRK = zeros(r, K);
14 E SKM = zeros(r, K);
15 % Initialise list of times
16 T K = zeros(r, K); T SRK = zeros(r, K);
17 T RK = zeros(r, K); T MSRK = zeros(r, K);
18 T SKM = zeros(r, K);
19
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20 %% Execution
21 % Run r realisations with seeds 1,...,r and store the outputs
22 for i=1:r
23 [E K(i,:), E SRK(i,:), E RK(i,:), E SKM(i,:), E MSRK(i,:),...
24 T K(i,:), T SRK(i,:), T RK(i,:), T SKM(i,:), T MSRK(i,:)] = ...
25 SingleTrial(m, n, K, i);
26 end
27

28 %% Plots
29 % Plot the outputs for r realisations. As the behaviour of convergence is
30 % exponential, we plot the logarithm of the errors.
31 lw = 1; % Set line width
32

33 figure('Name', 'Error at each iteration, 10 realisations')
34 hold on;
35 for i=1:r
36 plot(1:K, log10(E K(i,:)), 'k−', 'LineWidth', lw);
37 plot(1:K, log10(E SRK(i,:)), 'b−', 'LineWidth', lw);
38 plot(1:K, log10(E RK(i,:)), 'r−', 'LineWidth', lw);
39 plot(1:K, log10(E SKM(i,:)), 'm−', 'LineWidth', lw)
40 plot(1:K, log10(E MSRK(i,:)), 'g−.', 'LineWidth', lw);
41 end
42 xlabel('Iterations','interpreter','latex');
43 ylabel('$log {10}($Error$)$','interpreter','latex');
44 legend({'Kaczmarz', 'Simple Randomized Kaczmarz', 'Randomized Kaczmarz',...
45 'Sampling Kaczmarz−Motzkin', 'Modified Simple Randomized Kaczmarz'})
46

47

48 figure('Name', 'Error against computation time, 10 realisations')
49 hold on;
50 for i=1:r
51 plot(cumsum(T K(i,:)), log10(E K(i,:)), 'k−', 'LineWidth', lw);
52 plot(cumsum(T SRK(i,:)), log10(E SRK(i,:)), 'b−', 'LineWidth', lw);
53 plot(cumsum(T RK(i,:)), log10(E RK(i,:)), 'r−', 'LineWidth', lw);
54 plot(cumsum(T SKM(i,:)), log10(E SKM(i,:)), 'm−', 'LineWidth',lw);
55 plot(cumsum(T MSRK(i,:)), log10(E MSRK(i,:)), 'g−.', 'LineWidth', lw);
56 end
57 xlabel('Time','interpreter','latex');
58 ylabel('$log {10}($Error$)$','interpreter','latex');
59 legend({'Kaczmarz', 'Simple Randomized Kaczmarz', 'Randomized Kaczmarz',...
60 'Sampling Kaczmarz−Motzkin', 'Modified Simple Randomized Kaczmarz'})

F Technical specifications

Processor Intel Core i5-6200U at 2.4GHz base frequency

RAM 8GB DDR4 at 2133MHz

Operating System Windows 10 Home, Build 19041.804

MATLAB Version 9.5.0.1033004 (R2018b) Update 2

Table 3: Specifications of the setup used to run the numerical experiments
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